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Abstract

Introduction

Measures of heart rate variability (HRV) can be divided in time- and frequency 

domain parameters. It is frequently ignored that estimation of frequency domain

parameters is a two step procedure where statistical error from the first step (spectral 

estimation) is neglected in subsequent analyses.

Methods

We performed a simulation study to quantify the statistical error by using frequency

domain instead of time domain parameters. We generated tachograms from a 

stationary AR(1) process for a wide range of parameters and compared the resulting 

estimation error (in terms of precision and variability) for the SDNN and LF, HF, and 

LF/HF power.

Results

Estimation of frequency domain parameters is associated with (up to 10-fold) 

increased variability, as compared to the SDNN. Moreover, the SDNN has higher 

precision.

Conclusion

Frequency domain parameters should be applied in HRV analysis only if important 

physiological reasons suggest their use. If used, frequency domain parameters 

should be interpreted with caution, taking into account the statistical weaknesses of 

spectral estimation.
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Introduction

Cardiovascular disease (CVD) is still the leading cause of death and morbidity in 

industrialized nations, accounting, for example, for about 42 % of all deaths in 

Germany [1]. With incidence and prevalence of CVD increasing in the elderly, public 

health relevance and economic impact of CVD is expected to grow in the ageing 

populations in the western world. 

A large number of risk factors contribute to CVD, among those, autonomic 

dysfunction as indicated by reduced heart rate variability (HRV) is associated with an 

increased risk of CVD incidence and mortality [2-5].

Heart rate variability is defined as the variation in time between consecutive 

heartbeats, and several statistics have been proposed for its measurement. Most of 

them are based on the tachogram, the time series of beat-to-beat time differences 

(RR intervals). HRV analysis thus has to rely largely on the statistical methods of 

time series analysis, and, corresponding to the dichotomy of methods in time series 

analysis, the proposed measures can be divided in time domain and frequency

domain methods.

Whereas the estimation of time domain parameters is straightforward, estimation of 

frequency domain parameters is complicated by the fact that the estimation process 

consists of two steps: In the first step, the spectrum of the tachogram is estimated, 

and in the second step the frequency domain HRV parameters are derived from this 

estimated spectrum. In general, the statistical error that is induced by the estimation 

of the spectrum is ignored in further analysis, thus systematically overestimating the 

reliability of frequency domain HRV parameters. Additionally, as the common 

spectral estimates have rather insufficient statistical properties (e.g., the periodogram 

is an inconsistent estimator of the true spectrum) we expect this statistical error to be 

of relevant size. To our knowledge and up to now there has been no systematic 

investigation on the size of this error and its potential impact on interpretation of HRV 

parameters.

In the following we give the results of a simulation study to compare statistical 

precision and variability of the SDNN, LF power, HF power, and the LF/HF ratio as 

the most prominent time domain and frequency domain parameters, respectively.
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Methods

Simulated tachograms with a length of N = 512 observations were generated from a

autoregressive process of first order (AR(1)) process Yt = Yt-1 +  ,  ~ N(0,2), 0 < 

< 1. An AR(1) process constitutes one of the simplest models for a tachogram, and 

can be interpreted like a ordinary linear regression equation with Yt as the response, 

as the regression parameter for the single covariateYt-1, and a normally distributed 

random error  The current value of the process, Yt, (or in terms of HRV, the current 

beat-to-beat time difference) is the sum of the previous value Yt-1 (multiplied by ) 

and the random error. The association between Yt and Yt-1 is controlled by the AR(1) 

parameter  (keeping 2 fixed) the larger , the higher is the correlation between Yt

and Yt-1. The influence of the random error is controlled by the variance term 2: 

(keeping  fixed) the larger 2, the larger is the random error. The idea of regressing 

the current value on its own predecessor explains the term “autoregressive” for the 

process. Autoregressive processes of higher orders (AR(p) processes) are 

straightforward extensions of the AR(1) process by including the p previous values of 

the process in the model equation (Yt = 1Yt-1 + 2Yt-2 + … + pYt-p +  ,  ~ N(0,2)).

For an AR(1) process it can be shown [7, p. 53] that the true SDNN of a tachogram

from this process equals 
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that is, the SDNN can be calculated simply from the two parameters  and 2 of the 

underlying process.
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Based on this equation, true values for LF, HF and the LF/HF ratio can be calculated 

from the integral [8]
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by setting b = 0.4 and a = 0.15 for the HF, and b = 0.15 and a = 0.04 for the LF 

power.
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In the simulation study, we varied parameter values for the AR(1) parameter and

the error variance 2 and generated 10.000 tachograms for each combination of 

and2. Realistic values for and2 were derived from a random sample of 41

subjects of the CARLA Study [9] with regular tachograms. In this sample, the median 

was estimated to be 0.74, and the median 2 to be 237.5, corresponding to a 

median SDNN of 27.2 ms. In figure 1 we give the averaged autocorrelation and the 

averaged partial autocorrelation function for the 41 subjects together with the true 

theoretical autocorrelation function of a AR(1) process with = 0.74. It can be seen 

that the approximation of a simple AR(1) process to the estimated autocorrelation 

function is not perfect, in fact there is some evidence for longer memory in the data 

(as indicated by the spikes in the partial autocorrelation function at lags 3 and 4). 

However, we felt that, at least for the sake of simulation, correspondence is sufficient. 

Especially, there is no sign of a periodical behaviour in the sample. We finally varied 

from 0.50 to 0.95 in steps of 0.05 and2 between 150, 250, and 350 and simulated 

tachograms for each combination of these. Note that an AR(1) process is stationary 

for values < |1|.

From each tachogram we calculated the estimated SDNN as the standard deviation 

of the RR intervals, and LF, HF, and LF/HF ratio as areas under the curve from the 

raw periodogram. Additionally we also estimated all frequency domain parameters 

from a smoothed periodogram where smoothing was performed with a Tukey-

Hanning kernel with a fixed bandwidth of 5 periodogram ordinates.

In order to compare SDNN, LF, HF, and LF/HF ratio, we were interested in two 

different phenomena. First, we sought to describe how precisely the respective 

parameters estimate the corresponding true values (statistical precision or statistical 

bias); second, we intended to describe how strong the estimated values vary around 

the estimated values (statistical variability).

To describe statistical precision we calculated the relative percentage bias (RPB) [10]

100
ˆ

RPB 

















 ,



- 6 -

where stands for the respective true parameter value (true SDNN, LF, HF, or LF/HF

ratio as derived from the equations above) and ̂ for the corresponding mean 

estimated value
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i̂ being the estimated value from the i-th simulation run.

To describe statistical variability we calculated the relative percentage standard 

deviation (RPSD) [10]

100
ˆ

)ˆ(SD
RPSD 














with 






000.10

1i

2
i )ˆˆ(

1000.10

1
)ˆ(SD as the empirical standard deviation over all 

simulations for the respective parameter. It should be noted that there is no reference 

to the true parameter in the formula for RPSD, that is, it measures only the variability 

around the estimated average parameters, thus keeping precision (as measured by 

RPB) and variability (as measured by RPSD) strictly separated.

To make this rather technical description of our study design more comprehensible, 

we give an example for a fixed parameter constellation. Suppose we fix = 0.75 and 

2 = 250. A theoretical tachogram from an AR(1) process with these values will have 

a true SDNN of 23.9 ms, a true LF power of 70.3 ms2, a true HF power of 84.0 ms2

and a true LF/HF ratio of 0.84. In our simulation, we now generated 10.000 

tachograms from this process and estimate the SDNN, LF, HF, and LF/HF ratio from 

each of the tachograms. As we actually know the true values which generated the

tachograms, we can easily compare the estimated values to the true ones and 

calculate precision (RPB) and variability (RPSD) as described.

The simulation study and all analyses were programmed in SAS®, 9.1 (SAS Institute, 

Cary, NC, USA).

Results

In figures 2 and 3 we give the results of our simulation study in terms of the defined 

outcomes, precision (RPB) and variability (RPSD). As results were essentially

unchanged across the different values of 2, we only report results for 2 = 250. We 

also omit confidence intervals in the graphs, first to enhance their readability, and 
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second, because confidence intervals are very small in our setting with 10.000 

observations for each estimate. Moreover, length of confidence intervals could be 

further reduced by enlarging the number of simulation runs. To give an example, the 

95% confidence interval for RPBLF, periodogram (the estimate being - 10.5%) is [-10.0%, -

11.1%].

In terms of precision (figure 2), there is only a small bias of the SDNN and the LF/HF 

ratio across the whole range of the AR(1) parameter . HF consistently 

underestimates the true value by 4-6 %, and the underestimation in terms of the LF is

even larger (10-12 %). At first sight it might look counterintuitive that the LF/HF ratio 

is essentially unbiased. This can be explained in part by the fact that both LF and HF 

are negatively biased and these biases cancel out in their ratio LF/HF. However, in 

calculating the mean bias of the LF/HF ratio we do not build a ratio of mean biases of 

LF and HF, but rather calculate the mean bias of a ratio, which is not the same.

We might further be surprised that the SDNN becomes more biased the closer 

approaches 1, because in principle we expect the SDNN to be unbiased. However, 

unbiasedness is an asymptotic property, that is, unbiasedness is guaranteed only in 

infinite samples. Of course, our sample is finite, and the relevant sample size in this 

case is the length of the original tachogram, which is 512 in our case. We ran some 

additional simulations with longer tachograms (data not shown), and the bias of 

SDNN was indeed observed to diminish.

Biases from the smoothed periodograms are more erratic than those from the raw

periodograms and become more serious with larger values of 

In terms of variability figure 3, the SDNN is observed to have by far the smallest 

variability, being smaller than 10 % across most of the range of Opposed to this, 

the frequency domain parameters show larger variability, which is 20-25 % for the 

HF, 30-35 % for the LF, and 40-45 % for the LF/HF ratio. Again, smoothed spectra 

do not solve the problems of the raw periodograms. In summary, variability for the

frequency domain parameters is 1.4 to 10-fold larger than the variability for the 

SDNN, the “best” case occurring with 0.95 (RPSDSDNN = 13.6, RPSDHF,smoothed =

19.1), and the “worst” case with 0.50 (RPSDSDNN = 4.0, RPSDLF/HF, periodogram =

40.2).
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Discussion

Our simulation study yielded a clear result: In HRV analysis, time domain parameters 

can be estimated with smaller bias and considerably smaller variability as compared 

to frequency domain parameters.

This result was found despite the fact that the simulation study was set up in the best 

possible way to give valid results for the frequency domain parameters: We

generated tachograms from a stationary process without ectopic beats or other 

arrhythmic events, and chose tachogram length as a power of 2 (512 = 29). These 

optimized conditions will not be given with real life data, instead observed 

tachograms will be non-stationary (thus invalidating standard spectral estimation), 

especially when larger recording periods are being used. Moreover, a number of pre-

processing steps (trend removal, interpolation of ectopic beats, zero padding, 

tapering, resampling) will be necessary for valid spectral estimation [6]. As different 

studies use different protocols for pre-processing, we feel that results of frequency 

domain parameters are hardly comparable. It would be of great help to have an 

extension of the Task Force statement [6] explicitly fixing the pre-processing steps for

frequency domain analysis.

To give an impression of the actual relevance of our results we offer the following 

explanation in terms of statistical power. Assume we plan a study to assess the 

mean difference in HRV between two groups (e.g., male and female) and use the 

SDNN and the HF power as HRV measures. We consider a 10 % difference in the 

respective measure as clinically relevant, corresponding, for example, to a gender 

difference of 40 versus 44 ms SDNN, or 100 versus 110 ms2 HF power. The 2-group 

t-test for independent data would be an appropriate statistical test to compare 

means. The necessary sample size can be computed by
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Keeping size (), power (1-), and the relative difference in means constant, the 

sample size rises quadratically with the standard deviation. That is, a three-fold larger 

standard deviation for the HF power results in a nine-fold larger sample size to detect 

a 10 % difference in HF values, as compared to SDNN values. Note that in the 
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simulation the HF power was shown to have an up to six-fold larger standard 

deviation, corresponding to a thirty-six-fold increase in the necessary sample size.

It is a limitation of our simulation study that it uses a rather simplistic model for 

tachogram generation, and we showed (figure 1) that real data do not necessarily 

follow such a simple model. We decided to use an AR(1) process mainly because

computation of true values of the frequency domain parameter requires complicated 

integrals, and using AR processes with higher orders would make these integrals

essentially intractable. However, the estimation procedure for time and frequency 

domain parameters is identical for AR processes of first order and for AR processes

with higher orders. That is, statistical weaknesses of spectral estimation will be 

exactly the same with AR(1) vs AR(p) processes. Moreover, with higher orders of the 

underlying processes, true spectra will have more complicated forms, e.g., with 

multiple modes, and spectral estimation is expected to perform even worse.

Therefore, there is no reason to believe that spectral estimation works better in these 

situations.

Another limitation is that our simulation only compared time domain and frequency 

domain parameters. It has recently been shown [11] that nonlinear measures of HRV 

offer additional and independent prognostic information for predicting cardiovascular 

events. However, as some of these nonlinear measures are also calculated from the 

periodogram (e.g., the 1/f slope) we expect similar problems with precision and 

variability for these nonlinear HRV measures.

We emphasize that our simulation only allows conclusions concerning statistical 

issues. The possibility of identifying periodic oscillations in the HRV signal and 

correlating these oscillations to the autonomic nervous system has promoted the 

application of frequency domain parameters in HRV analysis [12]. For example, 

under controlled conditions the HF power directly reflects vagally mediated 

respiratory effects, tested in clinical studies with pharmacologically determined 

cardiac vagal tone [12,13]. In contrast, interpretation of LF power is more complex as 

it is sensitive to various other factors, thus complicating a straightforward 

physiological interpretation [14]. However, LF and HF power together allow a 

characterisation of sympatho-vagal balance. That is, if we are mainly interested in the 
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balance of sympathetic and parasympathetic activity we probably still have to rely on 

frequency domain parameters, in spite of the described statistical weaknesses.

We finally conclude that frequency domain parameters should be applied in HRV 

analysis only if important physiological reasons suggest their use. If used, frequency 

domain parameters should be interpreted with caution, taking the statistical 

weaknesses of spectral estimation into account. Because of its higher robustness,

the calculation of time domain parameters should be added to the analysis of 

associations of HRV with morbidity and mortality. Although the use of time domain 

parameters has been recommended by the task force for long-term ECGs only, 

several studies have demonstrated good predictive ability of SDNN also from short-

term ECGs [15,16].
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Figure legends

Figure 1:

Estimated and theoretical autocorrelation functions. The estimated autocorrelation 

function and its partial counterpart were estimated from 41 CARLA [9] subjects with 

regular tachograms. The theoretical autocorrelation function is the true 

autocorrelation function for a AR(1) process with  = 0.74.

Figure 2:

Relative percent bias (RPB) for the respective HRV parameters.

Figure 3:

Relative percent standard deviation (RPSD) for the respective HRV parameters.
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