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ABSTRACT

Many study designs in applied sciences give rise to correlated data.
For example, subjects are followed over time, are repeatedly treated
under different experimental conditions, or are observed in logical
units (e.g. clinics, families, litters).

Statistical methods for regression analysis for this kind of data with
continuous responses are quite established and the SAS® system
offers a variety of procedures (GLM procedure, MIXED procedure)
for analysis. For discrete responses, however, we have to face a
greater mathematical complexity and statistical analysis is not that
straightforward any longer.

We show the different options that the SAS® system offers for the
analysis of binary responses with correlated data (GENMOD
procedure, %GLIMMIX, %NLINMIX, NLMIXED procedure,
PHREG/LOGISTIC procedure and Meta-Analytic methods),
investigate their statistical properties, and illustrate them by an
example of a multicenter study.

We conclude that it is difficult to give general recommendations
which of the methods to use because this depends on the data at
hand and on the desired interpretation of parameters, but in our data
set we feel most comfortable with the results from the NLMIXED and
the PHREG/LOGISTIC procedure.

INTRODUCTION

The logistic regression model has become the standard analyzing
tool for binary responses in a variety of disciplines. Reasons for this
are: ease of interpretation of parameters as adjusted odds ratios,
possibility of calculating prognoses for the event of interest, and
availability of standard software. The LOGISTIC procedure is the
standard tool in SAS® software for fitting logistic regression models,
but solutions with the GENMOD, the PROBIT, or the CATMOD
procedure are also possible.

A crucial point in standard logistic regression analysis is that
observations are independent of one another and it is known that
violations of this assumption result in invalid statistical inference.
However, many study designs in applied sciences give rise to
correlated data. For example, subjects are followed over time and
responses are assessed at different time points, are repeatedly
treated under different experimental conditions, or are observed in
logical units (e.g. clinics, families, litters).

In the following we illustrate the different options that SAS® software
offers for the analysis of binary responses with correlated data
(GENMOD procedure, %GLIMMIX, %NLINMIX, NLMIXED
procedure). We show that each of them estimates parameters from
one of two different statistical models and comment on the
interpretation of parameters and the statistical properties of the
methods involved. The models and the estimation procedures are
illustrated by an example of a multicenter randomized controlled
clinical trial.

THE DATA

The data set that we use to explain the various procedures was
originally reported by Beitler/Landis, 1985, and was also used by
Wolfinger, 1999, to introduce the new NLMIXED procedure. The
data have been collected in a multicenter randomized controlled
clinical trial conducted in eight different clinics. The purpose of the
study was to assess the effect of a topical cream treatment
compared to no treatment on curing nonspecific infections. In each
of the eight clinics (c1inic), the number of treated (n) and the

number of successfully cured persons (x) were recorded for
treatment (treatment=1) and control (treatment=0). The SAS®
data set is the following:

data infection;
input clinic treatment x n;
datalines;
1 11 36
10 37
16 20
22 32
19
19
16
17
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run;

A CRUDE ANALYSIS

A first preliminary analysis to assess the treatment effect will maybe
ignore the fact that the data were observed in different clinics and
collapse the data in a single 2x2-table. A suitable measure for
treatment effect in this case is the odds ratio and the FREQ
procedure can be used to achieve an estimator. Some small data
manipulation (actually writing each person with its response (cure)
in a single line) has to precede the analysis (the variable status will
be needed in a later analysis):

data infection2 (drop=1i) ;
set infection;
do i=1 to n;
if i<= x then cure=1;
if i > x then cure=0;
status=2-cure;
output;
end;
run;

proc freq data=infection2;
tables treatment*cure / relrisk;
run;

This analysis yields an estimated odds ratio [with 95%-CI] of 1.498
[0.915; 2.452], that means the odds for curing the infection is
roughly 50% higher in the treatment compared to the control group.
However, proceeding this way completely ignores the fact that the
study was undertaken in several clinics and we might suspect that
different features of them (personnel, environment, typical population
of patients) might influence the treatment effect in the individual
clinic. Note that this also implies that there is a correlation of patients
within individual clinics. In a clinic with high treatment effect many
patients will be cured and a cure in a single patient will be
accompanied with a higher probability by a cure of another patient
from the same clinic.



THE LOGISTIC REGRESSION MODEL WITH
CORRELATED DATA

In the following section we show several methods for analysing the
described data set with SAS® software that explicitly account for the
correlation between patients in the different clinics.

First, we introduce some notation: Let Yj, i=1,..., n, j=1,...,n;, denote
whether patient j in clinic i was cured (Y = 1: yes, Yj = 0: no) and X;
whether patient j in clinic i was in the treatment or in the control
group (x; = 1: treatment, x; = 0: control). The response Yijis
assumed to follow a Bernoulli distribution where the probability of
cure is denoted by pj;, that is p; = P(Yj; = 1) and this also equals the
expected cure E(Yj) = p.

MARGINAL VERSUS RANDOM EFFECTS MODELS

The are two large families of statistical models that account for the
correlation in a different style and whose estimated parameters have
different intepretations, marginal models and random effect models
(Diggle, Liang, Zeger, 1994).

In a marginal model the effect of treatment is modelled separately
from the within-clinic correlation. A marginal logistic regression
model for our data set is given by:

Iogit(pu) = bO + btrea{ Xq
Var(Y;i) = pj (1- py)
Corr(Yi,Yi) = o

The interpretation of the parameters is analogous to the standard
logistic regression model. The transformed regression coefficient
exp(byear) is the odds for cure for a treated patient divided by the
odds for cure in a patient from the control group. However, in this
model we adjusted for the correlation between patients from the
same clinic and we assumed that this correlation is identical for
every two patients from the same clinic. Of course, patients from
different clinics are considered to be independent.

The interpretation of the parameter does not depend on the
respective clinic but rather is valid for the whole population of clinics
in the study and actually averages the treatment effect across the
clinics. This is why the parameters from marginal models are
sometimes called population-averaged parameters.

In arandom effects model it is assumed that there is natural
heterogeneity across the clinics and that this heterogeneity can be
modelled by a probability distribution (in our case the normal
distribution) which means that the regression coefficients vary from
one clinic to another. By using this approach the correlation between
patients from the same clinic arises from their sharing specific but
unobserved properties of the respective clinic. A random effects
logistic regression model (more specifically: a random intercept
logistic regression model because the intercept is the only random
parameter) for our data set is given by:

logit(P(Yj = 1) | ui) = bo + byeat Xij + Ui

with u; ~ N(0,v?). We assume further that, given u;, the responses
from the same clinic are mutually independent, that is the correlation
between patients from the same clinic is completely explained by
them having been treated in the same clinic.

By including only the random intercept u; but keeping the treatment
effect fixed we assume that there is a single individual cure
probability in each clinic but the effect of treatment is identical
across the clinics. This single individual cure probability is the
reason why parameters from random effects models are also called
subject-specific parameters

The interpretation of parameters is also analogous to the standard
logistic regression model. The transformed regression coefficient
exp(byear) is the odds for cure for a treated patient compared to a
control group patient. The variance v> measures the degree of
heterogeneity in the probability of cure that can not be explained by
treatment.

Because both, fixed effects (here: treatment) and random effects
(here: the intercept) are combined in the model, these models are
also sometimes called mixed effects models.

THE GENMOD PROCEDURE

The GENMOD procedure is the SAS® procedure for fitting
Generalized Linear Models, a class of regression models for
univariate responses with density from an exponential family
(McCullagh/Nelder, 1989) which includes, besides others, linear,
logistic and Poisson regression. Since SAS® Version 6.12 the
GENMOD procedure also allows the modelling of correlated data via
the REPEATED-Statement where the implemented estimation
method is the GEE (=Generalized Estimation Equation) of
Liang/Zeger, 1986. Thus, this procedure can be used to fit our data
set in the context of marginal models and the following call of the
GENMOD procedure realizes this:

proc genmod data=infection2 descending
order=data;
class treatment clinic;
model cure=treatment / d=bin link=logit;
repeated subject=clinic / type=cs;
estimate "treatment" treatment 1 -1 / exp;
run;

W e have to specify the logistic regression model from the familiy of
Generalized Linear Models by the D=- and the LINK=-Option in the
MODEL-Statement. Invoking the REPEATED-Statement calls for
the GEE analysis and the TYPE=CS-Option specifies the desired
within-clinic correlation matrix. The ESTIMATE-Statement delivers
the estimated odds ratio for the treatment effect.

THE %GLIMMIX MACRO

The %GLIMMIX macro was written by Russ Wolfinger from SAS®
Institute and is available from the SAS® homepage
(http://ftp.sas.com/techsup/download/stat/gimm800.html, please
note that we refer to the most recent version which requires Version
8). The macro is designed for the analysis of Generalized Linear
Mixed Models (GLMM), and as our random effects logistic
regression model is a special case of that model it fits our needs.

An overview about the macro and the theory behind is given in
Chapter 11 of Littell et al., 1996. Briefly, the estimating algorithm
uses the principle of quasi-likelihood and an approximation to the
likelihood function of the model that results in an iterative procedure
repeatedly fitting a linear mixed model to a pseudo response. The
macro was originally written to estimate the pseudo-likelihood
function of W olfinger/O’Connell, 1993, which extended the penalized
quasi-likelihood approach of Breslow/Clayton, 1993, by estimating an
additional overdispersion parameter.

A third approach to fitting GLMM, the so called marginal quasi-
likelihood approach (MQL, Breslow/Clayton, 1993), is a simplification
of the other two approaches that uses a cruder Taylor series
expansion to define the pseudo response. The MQL is no longer
recommended because it has shown deficiencies in estimating the
variance parameters of the random effects, at least in some
situations (Brown/Prescott, 1999).

The following SAS code fits our data set with the %GLIMMIX macro
in the context of Generalized Linear Mixed Models:

%include "...\glmm800.sas";
$glimmix (data=infection2,
stmts = %$str(

class clinic;

model cure = treatment /
solution cl;

random clinic;

parms (0) (1.0) / EQCONS=2;
)

error=binomial,



link=logit,
procopt=order=data
)

run;

The model is actually defined in SAS PROC MIXED syntax and the
relevant statements are given in the STMTS argument. Using the
EQCONS=2-Option in the PARMS-Statement fixes the
overdispersion parameter at the given value of 1 and thus requests
the estimation of the penalized quasi-likelihood model of
Breslow/Clayton, 1993. Leaving out the EQCONS=2-Option gives
the pseudo-likelihood estimates of Wolfinger/O’Connell, 1993. The
ERROR=BINOMIAL and LINK=LOGIT arguments define the
logistic regression model and PROCOPT=ORDER=DATA ensures
the proper ordering of the treatment effect.

THE %NLINMIX MACRO

The %NLINMIX macro was also written by Russ W olfinger from
SAS® Institute and is available from the SAS® homepage
(http://ftp.sas.com/techsup/download/stat/nlmm800.html, please
note that we refer to the most recent version of the macro which is
even more important as with the %GLIMMIX macro because there
were substantial syntax changes to Version 8).

The %NLINMIX macro is actually designed for the analysis of non-
linear mixed models, but a simple transformation of the model
equation shows that we can write our random effects logistic
regression model as a nonlinear model:

YI] = eXpit(bo + btreal Xq +U|) + SI]

with u; ~ N(0,v?), &; ~ N(0,6%), u; and &; uncorrelated, and
expit(a)=exp(a)/(1+exp(a)). The necessity of including the
measurement error g; in the model equation arises from the fact that
we now directly model the response Y;; and no longer its expected
value.

A thorough description of the %NLINMIX macro, the implemented
methods, and their properties is given in several articles by
Wolfinger and co-authors (Litell et al., 1996 (Chap. 12), Walfinger,
1997, Wolfinger/Lin, 1997). Shortly, the %NLINIMX macro provides
(at least) three different methods of parameter estimation. The first
two estimation methods are based on a Taylor series expansion
around values for the random effect parameters where the first
method expands around the zero vector and the second around the
best empirical linear unbiased predictor (EBLUP) of the random
effects. Both approximations result in algorithms that iterate linear
mixed models for suitably defined pseudo responses. Theoretically,
the EXPAND=EBLUP-method gives more reliable results because it
uses a more accurate Taylor series expansion (W olfinger, 1997),
whereas the EXPAND=ZERO-method is considered to be more
stable and less time consuming. There are close connections to
several other methods of parameter estimation in nonlinear mixed
effects models (W olfinger/Lin, 1997).

The third method, finally, is a refined GEE estimation, that is, it
actually fits a marginal model. To be concrete, it extends the fitting
algorithm used in the GENMOD procedure by using a quadratic
instead of a simple method of moment estimation equation for the
correlation parameters (Davidian, 2001).

The following SAS code fits the described models:

* Code for Estimation methods 1 and 2, just
choose EXPAND=ZERO or EXPAND=EBLUP;

%include "...\nlmm800.sas";
$nlinmix(data=infection2,
model =%str(
num exp (b0 + b_treat*treatment + u);
den = 1 + num;
predv = num/den;
)
parms =%str (b0=-0.7142 b treat=0.404),

derivs=%str(
d b0 = num /(den*den) ;

d b treat = treatment*num /(den*den) ;
d u = num /(den*den) ;
)
stmts = %str(

class clinic;
model pseudo_cure= d b0 d b treat /
noint solution cl;
random d_u / subject=clinic cl solution;
)
procopt=empirical,
expand=zero /* This line for Method 1 */
expand=eblup /* This line for Method 2 */
)

run;

* Code for Estimation method 3;

%include "...\nlmm800.sas";
$nlinmix(data=infection2,
model = %$str(

num exp (b0 + b_treat*treatment) ;
den = 1 + num;
predv = num/den;
weight = 1/predv;
)
parms = %$str(b0=-0.7142 b_treat=0.404),

derivs = %$str(
d b0 = num /(den*den) ;
d b treat = treatment*num /(den*den) ;
)
stmts = %str(

class clinic;
model pseudo_cure= d b0 d b treat /
noint solution cl;
repeated / sub=clinic type=cs;
weight weight;
)
procopt=empirical
)

run;

The macro code is rather technical, and the instructions how to
define the correct model are given in the header of the macro. The
nonlinear model is coded by standard SAS programming language
with the MODEL argument, the nonrandom parameters are given
with suitable starting values in the PARMS argument, derivations of
all model parameters are given in the DERIVS argument, and in the
STMTS argument the model is defined in SAS PROC MIXED
syntax. Note the differences between the random effects models in
the first %NLINMIX call and the marginal model in the second call:
the marginal model uses the REPEATED-Statement instead of the
RANDOM-Statement in the STMTS argument, and there is no
reference to the random effect u.

THE NLMIXED PROCEDURE

The statistictical methods used in the %GLIMMIX and in the
%NLINMIX are only approximative as they do not maximize the
likelihood of the model directly but only approximations of it. This is
necessary because the likelihood of the model incorporates
untractable integrals that can be calculated directly only in special
cases or with considerable effort.

The new NLMIXED procedure which is part of the SAS® System
since Version 7 follows another direction. It attempts to maximize the
likelihood directly by numerical integration methods, more precisely
by adaptive Gaussian quadrature. At least theoretically, it delivers
exact maximum likelihood (ML) estimates of the parameters if the
number of quadrature points is large enough.

The following SAS code fits the nonlinear random effects model by



adaptive Gaussain quadrature:

proc nlmixed data=infection2;

parms b0=-0.7142 b_treat=0.404 s2u=2;

eta = b0 + b_treat*treatment + u;

expeta = exp(eta);

p = expeta/ (l+expeta) ;

model cure ~ binary(p);

random u ~ normal (0,s2u) subject=clinic;
run;

In the PARMS-Statement suitable starting values for the parameters
are given, the random effects logistic regression model is defined in
SAS® programming language, the distribution of the response is
given in the MODEL-Statement and the distribution of the random
effect is defined in the RANDOM-Statement.

THE PHREG PROCEDURE / THE LOGISTIC PROCEDURE

Now we point to another statistical method of estimating the
parameters in a random effect logistic regression model which can
also be realized within the SAS® system. It uses conditional
maximum likelihood estimation, that is, it maximizes the conditional
likelihood function of the model, given the sufficient statistics of the
parameters. It turns out (Diggle, Liang, Zeger, 1994) that this
conditional likelihood function in our case is equivalent to that one in
stratified (or matched) case-control studies (Breslow/Day, 1980). As
such this model can be fitted with the PHREG procedure. In fact, we
trick the PHREG procedure by considering a degenerated survival
model with only two survival times (status) and the actual
response (cure) as the censoring indicator, that is to say we define
a patient to be censored if he was not cured. The clinics define the
different strata in the model and the TIES=DISCRETE-Option in the
MODEL-Statement calls the correct likelihood function for discrete
event times. The following SAS® code fits the model as described:

proc phreg data=infection2;
model status*cure(0)=treatment /
ties=discrete;
strata clinic;
run;

An advantage of this method is that it completely removes the
random intercept from the likelihood equation and thus does not rely
on the assumption of normality of the random effects distribution
(and this is also why we get no estimate for the random intercept).
However, the currently described conditional ML analysis with the
PHREG procedure supplies only asymptotically valid estimates and
we can use the LOGISTIC procedure to get an exact analysis of the
model. Here we merely report the syntax and do not go too much into
the details of exact conditional analysis, a good explanation of the
model is given by Derr, 2000:

proc logistic data=infection2
descending exactonly;
class clinic / param=ref;
model cure=clinic treatment;
exact treatment / estimate=both;
run;

META-ANALYSIS / PROC MIXED

Note further that the described data set can also be interpreted as
arising from a meta-analysis of independent randomized controlled
clinical trials. As such, we can also use the traditional meta-analytic
methods for analysis. A good introduction into the topic with some
remarks on fitting the model with SAS® software is given by
Normand, 1999. In a reply to this paper, Stijnen, 2000, demonstrates
how the standard meta-analytic random effect model can be
estimated by the MIXED procedure.

Just to give a small sketch of the method, statistical analysis in the

meta-analytical context consists of two steps. In the first step the
treatment effect (here the log odds ratio, 1ogor) is estimated for
each single study and in the second step an overall treatment
estimator is calculated as a weighted average of the study estimates
where the weights are the inverse of the estimated variances
(varlogor) of the single study treatment effects.

To fit the model with the MIXED procedure we consider the
estimated study treatment effects as the response and include no
further covariates. To model the different study variances we declare
the study effect as the GROUP=-Effect in the REPEATED-
Statement and pass the estimated variances over to the MIXED
procedure in the PARMS-Statement. The EQCONS=-Option
prevents them from being estimated. If we want to estimate a
random effects meta-analysis model we have to include a
RANDOM-Statement to declare the study effect as a random effect
and an additional parameter in the PARMS-Statement which
estimates the variance of the treament effect between studies.

The following SAS® code fits the infection data set with meta-
analytical methods. Please note that we added 0.5 to every cell in
studies 5 ond 6 to avoid problems with zero cells.

* Step 1: Estimation of the treatment effect
and its variance for every single study;

data infection3;
input clinic st nt sc nc;
logor=log( (st* (nc-sc))/(sc*(nt-st)));
varlogor=1/st + 1/sc +
1/ (nt-st) + 1/ (nc-sc);
datalines;

1 11 36 10 37
2 16 20 22 32
3 14 19 7 19
4 2 16 1 17
5 6.5 18 0.5 13
6 1.5 12 0.5 11
7 1 5 1 9
8 4 6 6 7

run;

* Step 2: Estimation of the overall
treatment;

* Estimation of a fixed effect model;
proc mixed data=infection3 method=ml;
class clinic;
model logor= / s cl;
repeated / group=clinic;
parms
(0.26795) (0.45795) (0.49762) (1.63393)
(2.32080) (2.85714) (2.37500) (1.91667)
/eqcons=1 to 8;
run;

* Estimation of a random effect model;
proc mixed data=infection3 method=ml;
class clinic;
model logor= / s cl;
repeated / group=clinic;
random intercept / subject=clinic;
parms (0)
(0.26795) (0.45795) (0.49762) (1.63393)
(2.32080) (2.85714) (2.37500) (1.91667)
/ egcons=2 to 9;
run;



COMPARISON OF METHODS

The following table compares the results of the different procedures
for the infection data set. We concentrate on the estimate of the
odds ratio for treatment with its 95% Wald confidence interval (which
in some cases can be estimated within the procedures and in other
cases requires an additional small calculation by hand or in an
additional data step):

Method OR [95%-Cl]

PROC FREQ 1.498 [0.915; 2.452]
PROC GENMOD 1.740 [1.102; 2.747]
%GLIMMIX (B/C) 2.063 [1.154; 3.688]
%GLIMMIX (W/O'C) 2.069 [1.176; 3.641]
%NLINMIX (Method 1) 1.728 [1.109; 2.693]
%NLINMIX (Method 2) 2.021 [1.076; 3.794]
%NLINMIX (Method 3) 1.737 [1.112; 2.714]
PROC NLMIXED 2.093 [1.162; 3.771]
PROC PHREG 2.130 [1.177; 3.855]
PROC LOGISTIC 2.130 [1.137; 4.079]
FE-Meta-Analysis 1.950 [1.057; 3.595]
RE-Meta-Analysis 1.950 [1.057; 3.595]

Calculating the crude odds ratio ignoring the clinic effect completely
(FREQ procedure) underestimates the treatment effect grossly and
even fails to reach statistical significance.

All of the methods that calculate the marginal odds ratio (GENMOD
procedure, %NLINMIX (Method 3)) result in smaller estimates for
the treatment effect compared to the odds ratios from the random
effects model. It can be shown that this is necessarily the case and
one can even calculate a multiplicative factor that converts the
estimates from the marginal to the random effect model (Zeger,
Liang, Albert, 1988). Allison, 1999, explains this phenomenon in
more detail and calls it “heterogeneity shrinkage” because the
difference between marginal and random effects grows with
increasing heterogeneity between clinics.

The methods that estimate the random effects model deliver very
similar estimates of the treatment effect (with the exception of
%NLINMIX (Method 1)) and declare the odds ratio for treament a
little bigger than 2, that is, the chance for curing the infection is more
than doubled in the treatment group. Note that the estimates from
the conditional ML method (PHREG/LOGISTIC procedure) are
identical and that proceeding to the exact method merely enlarges
the confidence interval by a small amount.

The Meta-Analysis estimates from the fixed and the random effects
model are identical. That means that the random effect model
considers the between-clinic heterogeneity as statistically non-
significant and automatically sets it to zero. This is in some
contradiction to the estimated v? (not shown) from the other
methods.

CONCLUSION

The SAS® System offers a large number of options for estimating
logistic regression models with correlated data. It is difficult to give
definite general recommendations which of the methods to use
because this depends on the data at hand and on the desired
interpretation of parameters (population-averaged vs. subject-
specific).

For our infection data set we feel most comfortable with the results
from the NLMIXED procedure and from the conditional ML analysis
because (1) the heterogeneity between clinics is explicitly modelled
and not considered as a nuisance effect, (2) they give exact ML
estimates compared to the approximate ML estimates from
%GLIMMIX and %NLINMIX, and (3) they are nearly identical under
the differing assumptions of a normal distributed random effect
(NLMIXED) and a complete removal of the random effect from the
likelihood function.

SAS® and all other SAS Institute Inc. Product or service names are
registered trademarks or trademarks of SAS Institute Inc. In the
USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or
trademarks of their respective companies.
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