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Abstract 

 

The propensity score (PS) method is increasingly used to assess treatment effects in 

nonrandomized trials. While there are several methods to use the PS for analysis, 

matching treated and non-treated patients by the PS is recommended by some 

researchers, mainly because this allows assessing and comparing covariate balance 

before and after matching. While the standardized difference is commonly applied to 

compute a measure of balance, it has two deficiencies: its distribution does depend on 

the sample size and there is no possibility to compare standardized differences for 

baseline covariates on different scales. We instead propose to use the z-difference to 

measure covariate balance in matched propensity score analyses. It solves the two 

mentioned problems of the standardized difference, moreover it is simple to calculate, 

can also be used with second moments for continuous covariates and in most cases can 

also be computed from published data. The full advantage of the z-difference emerges 

after displaying z-differences in a Q-Q-plot which additionally allows balance 

comparisons of the study data to 1) a randomized trial, and 2) to a perfectly matched PS 

analysis in the sense of Rubin/Thomas. The method is explained by a recent matched 

PS analysis to compare the clampless off-pump technique to the conventional on-pump 

technique in coronary artery bypass grafting. 
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Introduction 

 

The propensity score (PS) method is increasingly used to assess treatment effects in 

nonrandomized trials. Compared to the apparent standard method, regression modeling 

of the outcome, the propensity score method has several advantages(1-4).  

Propensity score analyses are conducted in two steps. In the first step, the propensity 

score, defined as the probability of treatment conditional on the subject‟s covariates, is 

estimated. In the second step, the estimated PS for each subject can be used in four 

different ways to arrive at an estimate of the treatment effect(5): matching on the PS, 

stratification on the PS, covariate adjustment using the PS, and inverse probability of 

treatment weighting (IPTW). Each method has its own merits, but Austin(6) and 

Morgan/Harding(7) prefer matching on the PS and give some of the advantages of PS 

matching as compared to the other three PS methods. The most important advantage is 

that covariate distributions in treated and untreated subjects after matching can be made 

explicit, similar to the traditional baseline table (or table 1) in a randomized trial (RCT) 

where the distribution of covariates (or at least, some descriptive measures of those) are 

reported. This enables judging the success of matching, especially when the 

distributions of covariates before matching are also reported in the table and the pre-

matching situation can easily be compared to the post-matching situation. 

 

It is commonly agreed that the balance of covariates should not be assessed by 

statistical tests. Imai et al.(8) call this practice the „balance test fallacy‟ and explain why 

this practice is considered wrong. For example, statistical tests for balance assessment 

lose power due to the reduced sample size after matching and thus erroneously show 

better balance which might actually only be due to the smaller number of observations. 

Even more extreme, Imai et al. show that even randomly dropping (instead of dropping 

the observations that cannot be matched) observations will diminish test statistics. 

Moreover, test statistics are not only influenced by balance and sample size, but also by 

other characteristics of the sample, for example the ratio of treated and untreated 

observations in the matched sample or (in the continuous case) the standard deviations 

of covariates in the two treatment groups. 
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To assess covariate balance it is recommended to use graphical displays, Rubin‟s 

diagnostics(9), or to compute the standardized difference. Regardless of the method 

applied, a statistic for assessing balance should(8;10) (1) not be affected by sample 

size, and (2) it should be a characteristic of the sample and not of some hypothetical 

population. It is common to use the standardized difference (the difference of means or 

proportions in both groups, divided by a common standard deviation) in this case, and a 

value of 10% or lower has often been proposed to define satisfactory balance. These 

rules of thumb, however, have also been contradicted, Imai et al.(8) suggest minimizing 

imbalance without limit, and Austin (10) shows that in small samples even values of 30% 

do not necessarily indicate a bad balance of covariates.  

 

While we agree that the standardized difference avoids statistical testing for baseline 

differences, we still see some disadvantages of it. First, while it is true that its value does 

not depend on sample size, its distribution does(10). Second, it is impossible to compare 

standardized differences for baseline covariates on different scales. For example, 

Austin(11) uses the phi coefficient for binary covariates and reports that a standardized 

difference of 10% for a continuous baseline covariate corresponds roughly to a phi 

coefficient of 5% for a binary one. However, there is still no solution for ordinal or 

nominal covariates. 

 

In the following we introduce a measure that resolves these two problems and illustrate 

it with data from a PS analysis(12) that compared the clampless off-pump technique to 

the on-pump technique in coronary artery bypass grafting.  

 

 

The z-Difference 

 

The idea of the z-difference is to measure covariate balance by a statistic that is 

standard normally distributed (henceforth denoted as N(0,1)) under the null hypothesis 

of covariate balance. This measure has been introduced to the PS literature for 

continuous covariates by Hill et al.(13), however, the statistic can be traced back at least 
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to Senn(14). To generalize this idea to another scale, we simply use a measure for 

imbalance on the respective scale and divide it through its standard error. For binary 

covariates we propose to use the risk difference, and for ordinal covariates the Wilcoxon 

statistic. The concrete formulas are given in the first three lines of table 1. Conveniently, 

the calculations need not be coded by hand, but are computed by default in most 

statistical software packages. For example, in SAS the procedures TTEST, FREQ, and 

NPAR1WAY can be used with small additional effort for data processing. A SAS macro 

is available from the author on request. For nominal covariates we are not aware of a 

measure that is N(0,1)-distributed, instead all association measures are only defined 

between 0 and 1, with 0 indicating no and 1 indicating perfect association. In the 

nominal case we thus propose to calculate the binary z-differences for all nominal 

categories. 

 

At various instances (see, e.g.(15)) it is emphasized that not just means and proportions 

should be checked for similarity, but the entire distribution of baseline covariates in the 

two groups. This is straightforward for continuous covariates where the Wilcoxon 

statistic can be computed which compares the whole distributions in the two groups. 

However, in the continuous case it is also possible to calculate z-differences based on 

second moments. Using the standard error of the empirical variance(16) and elementary 

formulas on sums of variances, one finds a z-difference based on variances. In a similar 

fashion, a z-difference based on the coefficient of variation can be defined using the 

respective standard error given by Miller and Feltz(17). The respective formulas are 

given in the lines 4 and 5 of table 1 and also only require estimates for means and 

standard deviations in the two groups. For binomial covariates it is impossible to give z-

differences for higher moments, because the higher moments are necessarily fixed by 

the first moment. 

 

To fully recognize the advantage of the z-difference we follow Hill et al.(13), and propose 

to draw Q-Q-Plots where the z-differences for all covariates before and after matching 

are displayed. As the z-differences are N(0,1)-distributed under the null hypothesis of 

covariate balance, we would expect z-differences from a randomized trial (where the 

randomization ensures covariate balance, at least asymptotically) to be N(0,1)-
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distributed and lie on the line through the origin with slope equal to 1. Interestingly, we 

can also give a reference line for a matched PS analysis. Rubin/Thomas(18;19) showed 

that under several assumptions (e.g., PS matching was performed with the logit of the 

PS, covariates in the PS model are normally distributed, and there is a large pool of 

controls that is matched with a 1:1-ratio to the treated subjects) the z-difference is 

N(0,1/2)-distributed. As such, we can also draw a reference line with slope 21  

through the origin and can compare the balance after matching to the “Rubin/Thomas 

line”. 

 

 

An example 

 

For illustration we use a matched PS analysis that compared the clampless off-pump 

(OPCAB) technique to the conventional on-pump technique (cCABG) in coronary artery 

bypass grafting(12). In this study, the PS model was estimated as a standard logistic 

regression model including all covariates from table 1 as main effects. We did not check 

if interactions would have improved covariate balance, but fitted a generalized additive 

model (GAM) to estimate the influence of all continuous covariates non-parametrically. 

However, this GAM fit did not result in better covariate balance and so we stayed with 

the main effects model. The fit of the PS model was additionally checked with the 

Hosmer-Lemeshow test and the first two diagnostics proposed by Rubin(9). 

 

In table 2 we give details on the covariate distributions of the 4 continuous, 10 binary, 

and 1 ordinal covariate, which were included in the PS model in the original analysis. 

We computed z-differences before and after PS-matching to judge the success of PS-

matching. To enable a comparison of the z- and the standardized difference we also 

computed the latter for the example data set. Following Austin(11), standardized 

differences for continuous covariates were computed as differences in means divided by 

the pooled standard deviation and for binary covariates as phi coefficients. It should be 

remembered, however, that with z-differences we can directly compare covariate 

balance between continuous and binary covariates, which is not possible for the 
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standardized differences. Moreover, there is no standardized difference for ordinal 

covariates and none for continuous covariates that uses information from other sources 

that the means. Figures 1 and 2 give Q-Q-Plots (Figure 1) where the z-differences 

before and after matching are displayed together with the two reference lines for a 

randomized trial and a perfectly matched PS analysis in the sense of Rubin/Thomas 

(“Rubin/Thomas line”). Figure 1 gives the Q-Q-plot with only the z-difference based on 

the mean differences for the continuous covariates. Figure 2 additionally reports the z-

differences based on the differences of variances, coefficients of variation, and on the 

Wilcoxon statistic, respectively, for the continuous covariates.  

 

In our example we can see that there is more covariate imbalance before matching (in 

figure 1 the estimated mean of z-differences is actually -1.17 and the estimated variance 

3.51) and less covariate imbalance after matching, both compared to a randomized trial. 

Moreover, the z-differences after matching lie very close to the Rubin/Thomas line, the 

estimated mean of the z-differences after PS-matching in figure 1 is 0.07, and the 

estimated variance 0.42, in close correspondence with the expected values of 0 and 0.5. 

 

Referring to the computed standardized differences and keeping in mind the common 

cutpoints of 10% for continuous covariates and 0.05 for the phi coefficient, we note a 

very close correspondence between z- and standardized differences. Looking at, for 

example, the continuous covariate age before matching, we find a z-difference of -3.24 

and a standardized difference of -19.3 %, both indicating a compromised balance. After 

matching, age is balanced with a z-difference of -0.46 and a standardized difference of -

3.3 %. A similar behavior can be seen for binary covariates. Considering the history of 

previous myocardial infarction, we find a z-difference of -3.14 and a standardized 

difference of -0.085 before PS matching, both pointing to missing balance, and 0.16 and 

0.006, respectively, after PS matching. As such, z- and standardized differences reach 

similar conclusions on balance in our example data set. 

 

It is also obvious that there can be additional information when using all four z-

differences for a continuous covariate. Referring, for example, to the covariate „number 

of previous surgeries‟ we note inconspicuous z-differences before matching in terms of 
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the mean (1.56), the CV (-0.19), and the Wilcoxon based z-difference (-1.48), but a large 

value of the z-difference based on the variance (9.80).  

 

 

Discussion 

 

We propose the z-difference to assess covariate balance in matched propensity score 

analyses. Compared to the present standard, the standardized difference, it allows 

comparison of continuous, binary, and ordinal covariates on the same scale, and also 

has a distribution that does not depend on sample size. As such, z-differences from 

samples with different sizes can easily be compared. Moreover, these advantages come 

not at a prize of an enhanced complexity in computation, instead the necessary 

calculations are comparable to the standardized difference and are implemented in 

statistical software. The full advantage of the z-difference emerges after displaying z-

differences in a Q-Q-plot which additionally allows balance comparisons of matched PS 

analyses with reference to 1) a randomized trial, and 2) to a perfectly matched PS 

analysis in the sense of Rubin/Thomas. The z-differences for continuous, binary (but not 

for ordinal) covariates can also be calculated from published data, e.g. when covariate 

balance from published data should be judged.  

 

Only recently, the importance of balance measures also for selecting optimal PS models 

(and not just for assessing balance) has been emphasized(20). Using standard meta-

analytic techniques, such global balance measures can also be defined by z-differences. 

Mathematically convenient, the standard error of the z-difference always equals 1. 

Applying common ideas for combining effect sizes(21) (and realizing that an estimate 

with standard error 1 has also an inverse variance of 1), it turns out that the mean of k z-

differences has a standard error of 
k

1 . In our example, the standard error for the 15 

z-differences in each group becomes 
15

1 = 0.258 and the mean z-difference before 

matching is -1.19 [95%-confidence interval: -1.69, -0.68] and 0.07 [-0.44, 0.57] after 

matching. Compared to the methods in Belitser et al.(20), it is a clear advantage of 
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summarized z-differences that they can summarize covariates with different scales and 

also allow to explicitly assess statistical variability by confidence intervals. 

 

It is fair to discuss some limitations of the z-difference. First, the z-difference could be 

criticized for re-introducing statistical testing and the p-value through the back-door, 

because it explicitly violates the ideas of Imai et al. which were given in the introduction. 

Or to be concrete, the z-difference depends on sample size and will necessarily indicate 

improved balance in the matched sample only due to restricted sample size in the 

matched sample. However, in matched propensity score analyses one of the 

fundamental problems of testing for covariate balance in RCTs is avoided. In RCTs the 

underlying populations are identical due to randomization and as such it is nonsense to 

test for the equality of population parameters, because it is known that these population 

parameters are equal by construction and so the null hypothesis is true by design. This 

equality of underlying populations, however, does not apply to matched PS analyses. 

Moreover, a lot of the reported problems with p-values comes from mixing Fisher‟s and 

Neyman-Pearson‟s ideas of statistical testing(22). We would like the z-difference to be 

understood in the Fisherian sense, as a measure of the plausibility of the data under the 

null hypothesis of equal balance, however, without referring to an alternative hypothesis, 

and without referring to a particular level of significance.  

A second limitation is the absence of a z-difference for a nominally scaled covariate. As 

noticed above, in this case we propose to calculate the binary z-differences for all 

nominal categories. For example, if we consider the ordinal covariate „priority‟ from our 

example data set as a nominal one, we achieve binary z-differences of -0.26, 0.23, 0.32 

and -0.57 for the four categories „elective‟, „urgent‟, „emergent‟ and „ultima ratio‟ for the 

matched sample. The respective figures before matching are -5.75, -5.71, -2.28 and, -

0.87, and we again find the improved balance due to PS matching.  

 

A final limitation might be that with the current proposal of the z-difference we 

concentrated on measuring covariate balance only in matched PS analyses. However, 

Austin(5) showed that standardized differences can be computed for all of the four 

methods that use the PS to arrive at an estimate of the treatment effect (matching on the 

PS, stratification on the PS, covariate adjustment using the PS, and inverse probability 
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of treatment weighting (IPTW)). It might be interesting future work to check if some of 

the good properties of the z-difference would carry over at least to the IPTW approach, 

where standardized differences differ only in using weighting factors as compared to 

their counterparts from PS matched groups.  

 

To finally conclude and despite the mentioned limitations, we feel that the advantages of 

the z-difference regarding simplicity, generality with respect to covariate scales, 

graphical accessibility, and summarizability outweighs their disadvantages and 

recommend it for a global assessment of covariate balance in matched PS analyses.  
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Table 1: Calculation formulas for the z-difference on the three relevant scales. 
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121 p̂,p̂,n,n,ˆ,ˆ,x,x  denote estimated means, variances, sample sizes, and 

proportions in groups 1 and 2. W equals the sum of ranks in group 2, where ranks 

have been taken with values from both groups amalgamated, g is the number of 

different values in the data set and tj is the number of identical values j(23). 
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Table 2: Distributions of baseline covariates resulting z-differences and standardized differences before and after PS-

matching for the example data set. Given are mean and standard deviation for the continuous covariates, and relative 

frequencies for binary and ordinal covariates. The standardized differences are computed as differences in means divided by 

the pooled standard deviation for continuous covariates (in %) and as phi coefficients for binary covariates (11). 

BMI, Body Mass Index; cCABG, conventional coronary artery bypass grafting (On-pump); COPD, Chronic Obstructive 

Pulmonary Disease; IABP, intra-aortic balloon pump; LVEF, left ventricular ejection fraction; MI, myocardial infarction; PAD, 

peripheral artery disease. 

 

 Before PS-matching (n = 1.282) After PS-matching (n = 788) 

Covariates 

Clampless 

OPCAB 

(n = 395) 

cCABG 

(n = 887) 
z-difference 

Standard. 

difference 

Clampless 

OPCAB 

(n = 394) 

cCABG 

(n = 394) 
z-difference 

Standard. 

difference 

  

Continuous scale (based on the difference of means) 

Age [years] 69.3 (9.1) 67.5 (9.4) -3.24 -19.3 69.3 (9.1) 69.0 (8.9) -0.46 -3.3 

BMI [kg/m²] 27.8 (4.2) 28.3 (4.5) 1.83 10.8 27.8 (4.2) 28.0 (4.2) 0.60 4.2 

Previous surgeries [n] 0.05 (0.26) 0.07 (0.39) 1.56 8.1 0.05 (0.26) 0.06 (0.27) 0.80 5.7 

LVEF [%] 56.7 (12.2) 55.4 (14.1) -1.64 -9.4 56.6 (12.2) 56.9 (13.3) 0.28 2.0 

  

Binary scale 

Gender [% female] 21.8 22.1 0.13 0.004 21.8 22.1 0.09 0.003 

Previous MI [%] 27.1 35.7 -3.14 -0.085 27.2 26.7 0.16 0.006 

Diabetes [%] 22.8 31.7 -3.39 -0.091 22.8 19.8 1.04 0.037 

Hypertension [%] 82.3 84.1 -0.80 -0.023 82.2 82.2 0.00 0.000 

Previous stroke [%] 1.0 2.4 -1.89 -0.045 1.0 1.8 -0.91 -0.032 

Table 2



 
 

COPD [%] 5.8 7.1 -0.88 -0.024 5.8 6.1 -0.15 -0.005 

Renal insufficiency [%] 0.8 1.2 -0.84 -0.021 0.8 0.3 1.00 0.036 

Main stem stenosis [%] 25.3 25.5 -0.06 -0.002 25.1 24.9 0.08 0.003 

PAD [%] 11.9 11.4 0.26 0.007 11.7 14.7 -1.26 -0.045 

Pre-OP IABP [%] 1.0 1.5 -0.70 -0.018 1.0 1.0 0.00 0.000 

 

Ordinal scale 

Priority [%] 

  elective 

  urgent 

  emergent 

  ultima ratio 

 

91.9 

2.5 

5.3 

0.3 

 

81.0 

9.8 

8.7 

0.6 

-4.82 -- 

 

91.9 

2.5 

5.3 

0.3 

 

92.4 

2.3 

4.8 

0.5 

-0.25 -- 

 

Continuous scale (based on the difference of variances) 

Age [years] 69.3 (9.1) 67.5 (9.4) 0.90 -- 69.3 (9.1) 69.0 (8.9) -0.42 -- 

BMI [kg/m²] 27.8 (4.2) 28.3 (4.5) 1.43 -- 27.8 (4.2) 28.0 (4.2) -0.31 -- 

Previous surgeries [n] 0.05 (0.26) 0.07 (0.39) 9.80 -- 0.05 (0.26) 0.06 (0.27) 1.19 -- 

LVEF [%] 56.7 (12.2) 55.4 (14.1) 3.35 -- 56.6 (12.2) 56.9 (13.3) 1.62 -- 

 

Continuous scale (based on the difference of coefficients of variation) 

Age [years] 69.3 (9.1) 67.5 (9.4) 1.46 -- 69.3 (9.1) 69.0 (8.9) -0.33 -- 

BMI [kg/m²] 27.8 (4.2) 28.3 (4.5) 0.97 -- 27.8 (4.2) 28.0 (4.2) -0.43 -- 

Previous surgeries [n] 0.05 (0.26) 0.07 (0.39) -0.19 -- 0.05 (0.26) 0.06 (0.27) -0.61 -- 

LVEF [%] 56.7 (12.2) 55.4 (14.1) 3.44 -- 56.6 (12.2) 56.9 (13.3) 1.47 -- 

 

Continuous scale (based on the Wilcoxon statistic) 

Age [years] 69.3 (9.1) 67.5 (9.4) 2.98 -- 69.3 (9.1) 69.0 (8.9) -0.41 -- 

BMI [kg/m²] 27.8 (4.2) 28.3 (4.5) -1.59 -- 27.8 (4.2) 28.0 (4.2) 0.56 -- 

Previous surgeries [n] 0.05 (0.26) 0.07 (0.39) -1.48 -- 0.05 (0.26) 0.06 (0.27) 1.00 -- 

LVEF [%] 56.7 (12.2) 55.4 (14.1) 1.53 -- 56.6 (12.2) 56.9 (13.3) 0.09 -- 

 



 
 

Figure 1: Q-Q-Plot for the z-differences (only those based on first moments) from the 

example data set before and after PS-matching. The broken gray line corresponds to 

the expected distribution of z-differences from a randomized trial. The solid gray line 

corresponds to the Rubin/Thomas line for z-differences in a matched PS analysis.  
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Figure 1



Figure 2: Q-Q-Plot for the z-differences from the example data set before and after PS-

matching. For continuous covariates four z-differences are reported: The z-differences 

based on the differences of means, variances, coefficients of variation, and on the 

Wilcoxon statistic. The broken gray line corresponds to the expected distribution of z-

differences from a randomized trial. The solid gray line corresponds to the 

Rubin/Thomas line for z-differences in a matched PS analysis. 
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